Unlock Flawless Images: AI-Powered Watermark Removal Workflow

CN
ComfyUI.org
2025-04-03 10:30:36

1. Workflow Overview

m917skrebegdbwpyydgb04e38c71e1b242a5de5ef3f883fa60acfdc9235abda6272f0b78d5b048b8efd.gif

This workflow is designed for automated or semi-automated removal of watermarks and logos from images. It supports two different detection modules (Florence2 and GroundingDINO + SAM) and allows manual mask adjustments. The final output is a cleaned image with a comparison view.


2. Core Models

Model

Function

Source

Florence2

Microsoft's OCR+region detection model, excels at text/logo detection

microsoft/Florence-2-large (HuggingFace)

GroundingDINO

Object detection for watermark/logo localization

GroundingDINO_SwinB (GitHub)

SAM (Segment Anything)

Segmentation model for precise masks

sam_vit_h_4b8939.pth (Meta AI)

Stable Diffusion (Inpainting)

Image inpainting to fill removed areas

e.g., realisticVisionV60B1 or other SD models


3. Key Nodes

(1) Image Loading & Preprocessing

  • LoadImage: Load input image (e.g., watermark-image-1.png).

  • ImageScaleByAspectRatio: Resize image (e.g., 1024x1024) while maintaining aspect ratio.

(2) Watermark Detection Modules

Module 1: Florence2 (OCR+Region Detection)

  • Florence2ModelLoader: Load Florence2 model (requires HuggingFace token).

  • Florence2Run: Run detection to output masks and text data.

Module 2: GroundingDINO + SAM

  • GroundingDinoSAMSegment: Combines DINO (detection) and SAM (segmentation) for mask generation.

  • GrowMaskWithBlur: Expands mask edges for natural blending.

(3) Image Inpainting

  • InpaintCrop: Crop the region to be repaired.

  • KSampler: Use Stable Diffusion (e.g., realisticVisionV60B1) for inpainting.

  • InpaintStitch: Stitch the inpainted area back to the original image.

(4) Output & Comparison

  • SaveImage: Save the final result.

  • Image Comparer: Side-by-side comparison of before/after results.


4. Workflow Structure

Group 1: Input & Preprocessing

  • Input: Image file (e.g., PNG/JPG).

  • Output: Resized image.

Group 2: Watermark Detection (Dual Modules)

  • Input: Resized image.

  • Output: Mask (for watermark/logo).

Group 3: Inpainting & Stitching

  • Input: Mask + original image.

  • Output: Repaired image.

Group 4: Result Comparison

  • Input: Original vs. repaired image.

  • Output: Comparison slider view.


5. Inputs & Outputs

Input Parameters

  1. Image file (e.g., watermark-image-1.png).

  2. Model choice (Florence2 or GroundingDINO+SAM).

  3. Inpainting settings (e.g., steps 20, CFG 1).

Output

  • Cleaned image (watermark removed).

  • Comparison view (optional).


6. Notes

Installation Dependencies

  1. Florence2: Requires HuggingFace account and API token.

    pip install transformers
  2. GroundingDINO + SAM:

    • Install from GitHub:

      git clone https://github.com/IDEA-Research/GroundingDINO
      git clone https://github.com/facebookresearch/segment-anything
    • Download model weights (e.g., sam_vit_h_4b8939.pth).

  3. ComfyUI Plugins:

    • Install via ComfyUI Manager:

      • rgthree Nodes (for context management).

      • LayerUtility (image scaling).

Troubleshooting

  • CUDA Out of Memory: Reduce resolution or launch ComfyUI with --medvram.

  • Model Load Failures: Verify weight file paths.

  • Inaccurate Masks: Manually adjust GrowMaskWithBlur (e.g., expand pixels=5).

Optimization Tips

  • Use RTX 3090/4090 or better GPU for optimal speed.

  • For 4K images, downsample to 1024x1024 first.


7. Summary

This workflow is ideal for batch watermark removal, combining auto-detection with manual control. Florence2 works best for text, while GroundingDINO+SAM handles graphic logos. Output quality depends on the SD model (e.g., realisticVision for photos, revAnimated for anime).


Tip: Test on small images first and fine-tune mask settings!