Boost Your Visual Content with AI-Driven Image Generation Workflow
1. Workflow Overview

This workflow specializes in controlled image generation with:
Multi-Modal Inputs: Text prompts + reference images
Precision Control: Flux sampling parameters + LoRA adjustments
Bilingual Processing: Integrated Baidu translation for prompts
Comparative Outputs: Side-by-side result analysis
Key Applications:
Advertising material generation
Social media content creation
Product visualization
2. Core Models
Model | Function | Source | Critical Parameters |
---|---|---|---|
Flux Model Series | Base image generation | Custom |
|
CLIP Dual-Encoder | Text+Image understanding | OpenAI |
|
Realistic LoRA | Lifestyle photo enhancement | Custom |
|
3. Critical Nodes
Core Processing Nodes
Node | Function | Installation |
---|---|---|
FluxSamplerParams+ | Precision sampling control | Requires |
FluxAttentionSeeker+ | Dynamic attention adjustment | Custom node |
BaiduTranslateNode | Real-time prompt translation | Manual install |
Special Dependencies
Flux Models:
git clone https://github.com/FluxAI/ComfyUI-Flux
Translation Service:
Requires Baidu API key
Configure in
config/baidu_translate.json
4. Workflow Architecture
Processing Stages
Stage | Key Nodes | Output |
---|---|---|
Input Prep | DualCLIPLoader → EmptySD3LatentImage | 1024x1504 latent space |
Controlled Generation | FluxSamplerParams+ → ModelSamplingFlux | Parameterized output |
Analysis | PlotParameters+ → SaveImage | Comparative results |
Data Flow
graph LR
A[Text Prompt] --> B[CLIP Encoding]
C[Reference Image] --> D[Latent Space]
B --> E[Flux Sampling]
D --> E
E --> F[VAE Decode]
F --> G[Result Comparison]
5. I/O Specifications
Input Requirements
Text Prompts:
Chinese/English bilingual support
Example: "Urban fashion photoshoot with graffiti backdrop"
Image Inputs:
Recommended 1024x1024 PNG
Alpha channel for masking
Outputs
Primary Image: High-res generated result
Parameter Analysis: Visualized sampling metrics
Bilingual Captions: JSON metadata
6. Optimization Guide
Performance Tweaks:
# In custom_nodes/flux_sampler.py: torch.set_float32_matmul_precision('high')
Quality Adjustment:
Flux
guidance_scale
: 3.5-5.0LoRA strength: 0.7-1.0
Troubleshooting:
Blurry outputs: Increase
steps
(20→30)Over-saturation: Reduce
cfg_scale
(3.5→2.5)
7. Deployment
Step 1: Dependency Installation
pip install baidu-aip torchvision>=0.15
Step 2: Model Placement
Flux models:
models/flux
LoRAs:
models/loras
Verification Command
# Check translation service
from aip import AipNlp
print(AipNlp('APP_ID','API_KEY','SECRET_KEY').detectLang("test"))
Real-World Use Case
Scenario: Sneaker ad generation
Input:
Prompt: "限量版运动鞋,未来主义设计,霓虹灯光效"
Blank canvas 1024x1024
Process:
Applies hyper-realistic texture LoRA
Generates 3 style variants
Outputs English/Chinese captions
Output:
{ "image": "sneaker_ad_final.png", "caption_en": "Limited edition sneakers with cyberpunk neon lighting", "parameters": {"steps":25, "cfg":3.8} }
Processing Time: ~38s (RTX 4090)
Note: Ideal for marketing teams needing rapid visual prototyping with precise control.