Ancient Beauty Generation Unveiled: Stable Diffusion Meets SUPIR
1. Workflow Overview

Function: Generates high-quality images of ancient-style beauties holding umbrellas, with face/hand refinement, face-swapping, and SUPIR upscaling.
Goal: Combine LoRA models and SUPIR to enhance stylized portrait generation.
Key Models:
Stable Diffusion 1.5 (Base:
majicMIX realistic_v7
).SUPIR-v0F (Fast upscaling model).
ControlNet (YOLOv8 for face/hand detection).
LoRA Stack (e.g.,
Ancient Beauty LoRA
,Hand Fix LoRA
).
2. Node Breakdown
Critical Nodes:
CheckpointLoaderSimple: Loads base model (e.g.,
majicMIX realistic
).CR LoRA Stack: Dynamically merges multiple LoRAs (costume, hand fix, detail enhancer).
KSampler: Controls generation (sampler:
dpmpp_2m
, steps 25-50).FaceDetailer/HandDetailer: Repairs faces/hands using YOLOv8 detectors.
SUPIR_sample: Upscales images with tile-based processing.
ReActorFaceSwap: Swaps faces (requires source portrait).
Dependencies:
SUPIR Models: Download
SUPIR-v0F_fp16.safetensors
tomodels/supir
.UltralyticsDetector: Install
comfyui-controlnet-aux
forbbox/face_yolov8m
.
3. Workflow Structure
Group Logic:
Model Loading:
Input: Base model, LoRAs, VAE.
Output: Loaded model + CLIP encoder.
Prompts:
Input: Positive/Negative prompts (e.g., "hanfu, umbrella").
Output: Conditioned text tensors.
Image Generation:
Input: Empty latent (512x768), text conditions, seed.
Output: Raw generated image.
Refinement & Upscale:
Input: Raw image, face/hand detectors.
Output: 2K upscaled image via SUPIR.
4. Inputs & Outputs
Inputs:
Required: Positive/Negative prompts, seed (randomizable).
Optional: Face-swap source image, SUPIR scale (default 4x), CFG (default 4).
Outputs:
Final image: 2K PNG with metadata.
5. Notes
Hardware: β₯8GB VRAM; SUPIR needs extra memory.
Common Errors:
Missing SUPIR model: Check
models/supir
.Face repair fails: Adjust
FaceDetailer
threshold (default 0.55).
Optimization:
Reduce
encoder_tile_size
(e.g., 512) for lower VRAM usage.Enable
fp8_unet
if GPU supports FP8.