Unlock Stunning Portraits: Advanced AI Workflow Revealed

CN
ComfyUI.org
2025-03-28 10:50:04

1. Workflow Overview

m8snu0a0ivdhrjslhpc9282b65c84e1af2c95c272b9df9535d35a1ac1b69103c97d2d466ec62129b6e6.png

Purpose: Generate hyper-realistic portraits with optimized lighting and skin details, suitable for photography and advertising.
Core Models:

  • Base Model: 基础算法_F.1 (FP8 optimized).

  • LoRAs:

    • F.1-光影氛围-摄影光影-写真-氛围_极致的光影效果_2.0 (strength=0.8 for lighting).

    • 仟士-真实人像-眸渊·光漪 - Portraiture_v1.0 (strength=0.4 for skin texture).

  • VAE: ae.sft (color enhancement).

  • CLIP: t5xxl_fp8_e4m3fn (multimodal text encoder).

Key Features:

  • Auto-Captioning: Uses Joy_caption_two to generate prompts from input images.

  • Multi-Stage Processing: Initial sampling → Upscaling → Film simulation → Color grading.


2. Key Nodes

Node

Function

Installation

Joy_caption_two_load

Loads captioning model (Meta-Llama-3.1-8B) to generate image descriptions.

Install ComfyUI-Joy (GitHub manual).

UltimateSDUpscale

Tile-based 2x upscaling (uses 4x_NMKD-Siax_200k model).

Via ComfyUI Manager.

LayerFilter: FilmV2

Adds film grain and dynamic range (adjustable parameters).

Requires ComfyUI-LayerStyle plugin.

DepthAnythingPreprocessor

Generates depth maps for post-processing DOF effects.

Install ComfyUI-Depth plugin.

Dependencies:

  • LoRA Models: Download and place in models/loras.

  • Captioning Model: Download Meta-Llama-3.1-8B-Instruct-bnb-4bit (~4GB).


3. Workflow Groups

Group

Function

Inputs/Outputs

1-FLUX Model Setup

Loads base model, LoRAs, and VAE; configures Flux sampling.

Input: Model files → Output: Initialized model.

2-Image Basics

Sets resolution (768×1280) and prompts (manual/auto-generated).

Input: Text/image → Output: Conditioned tensors.

3-Auto-Captioning

Generates descriptions from input images (e.g., clothing, pose).

Input: Image → Output: Text description.

4-Initial Sampling

Generates low-res images (CFG=3.5, steps=20).

Input: Latent → Output: Low-res image.

5-SD Upscaling

Tile-based 2x upscaling to avoid VRAM overload.

Input: Low-res image → Output: 2x image.

6-Post-Processing

Sharpening, color correction, and depth compositing.

Input: Upscaled image → Final output.

7-Film Simulation

Applies grain and dynamic range (adjustable).

Input: Image → Output: Film-style image.


4. Inputs & Outputs

Input Parameters:

  • Image (optional): Upload via LoadImage node (e.g., 27775044-882e3cdb...png).

  • Prompt (optional): Manually entered or auto-generated.

  • Resolution: Default 768×1280, upscaled to 1536px.

Output:

  • HD portrait (with lighting/skin enhancements), saved as MoYou.jpg.

  • Intermediate results previewable via PreviewImage nodes.


5. Tips & Warnings

  • VRAM: ≥12GB GPU recommended for upscaling.

  • Common Errors:

    • Captioning fails → Verify Meta-Llama model path.

    • Overly strong grain → Adjust grain_strength in LayerFilter: FilmV2 (default=0.05).

  • Optimizations:

    • Reduce FluxGuidance CFG (e.g., 3.5→2.5) if oversharpened.

    • Disable upscaling during testing for faster iterations.