From Concept to Reality: Mastering Progressive Denoising and Super-Resolution Techniques
1. Workflow Overview

Purpose: Generates high-fidelity images with minimal "AI-like" artifacts through multi-stage sampling, super-resolution, and progressive denoising.
Key Techniques:
FP8 Low-Precision Model: Uses
FLUX_FB8V1.safetensors(FP8 E4M3) for memory efficiency.Two-Stage KSampler: Base generation → Progressive denoising refinement.
Hybrid Upscaling: Combines
RealESRGANand latent space scaling (LatentUpscaleBy).
2. Core Models & Nodes
Model/Node | Function | Installation |
|---|---|---|
| Low-VRAM high-quality generation | Manual download to |
| Dual CLIP for advanced text encoding | HuggingFace/CivitAI |
| 4x super-resolution | Load via |
Custom Nodes | ||
| Progressive denoising | Install |
| A/B image comparison | ComfyUI Manager → |
3. Workflow Structure
Group 1: Model Loading & Text Encoding
Input: Positive prompt (e.g.,
dragon girl...), negative prompt (auto-handled).Output: Text conditioning.
Key Nodes:
DualCLIPLoader: Enhances prompt understanding.LoraLoaderModelOnly: Applies LoRA熬润.safetensors(weight=0.7).
Group 2: Base Image Generation
Input: Resolution
768x1152, seed=randomize, sampler=DEIS.Output: Initial latent image.
Key Nodes:
KSampler (Efficient): CFG=0.95, denoise=0.6.VAEDecode: Decodes latent for preview.
Group 3: Super-Resolution & Refinement
ImageUpscaleWithModel: 4x upscale via RealESRGAN.VAEEncodeTiled: Re-encodes upscaled image to latent space.LatentUpscaleBy: Secondary latent scaling (nearest-exact).Progressive KSampler: Denoise strength reduced (0.4→0.35).
Group 4: Result Comparison
Tool:
Image Comparerfor before/after sliding.
4. Inputs & Outputs
Inputs:
Required: Positive prompt, resolution (
768x1152recommended).Optional: Seed (default random), LoRA weight (default=0.7).
Outputs:
Final image (PNG with metadata).
Comparison slides (via
Image Comparer).
5. Notes
VRAM: ≥10GB GPU (e.g., NVIDIA 30/40 series).
Compatibility: Disable
xformersfor FP8 models.Troubleshooting:
CLIP encode failed→ Verifyt5xxl_fp8model path.
Optimization: Use
Tiled VAEplugin to reduce VRAM usage.