Unlock Realistic Material Transfer with IPAdapterFaceIDKolors and ControlNet

CN
ComfyUI.org
2025-03-31 10:45:27

1. Workflow Overview

m8wxzrm220s44k1y7jli9824c73bb4f724fa5f04acb5bb7093b188702ba5909f05a5e096f1dea1818ba5.png

This is a material/style transfer pipeline featuring:

  • Advanced facial & color transfer via IPAdapterFaceIDKolors

  • Structure preservation with ControlNet line art

  • Enhanced detail retention using CLIP vision encoding + InsightFace

  • High-quality output with target material properties

2. Core Models

Model File

Purpose

Source

majicMIX realistic 麦橘写实_v7

Base model (realistic)

CivitAI

control_v11p_sd15_lineart

Line art control

HuggingFace

CLIP-ViT-H-14-laion2B-s32B-b79K

Visual feature encoding

OpenCLIP

3. Key Components

Required Custom Nodes:

  1. IPAdapter Suite

    • Includes IPAdapterFaceIDKolors, IPAdapterNoise etc.

    • Install via ComfyUI Manager (search IPAdapter-Plus)

  2. InsightFace Loader

    • Requires additional antelopev2 model file

4. Pipeline Stages

Stage 1: Preprocessing

  • Inputs:

    • Source image: 花瓣素材_珠宝系列...jpg (material reference)

    • Target image: 97d3bd57...ycxIpG.jpg (content reference)

  • Key Operations:

    • PrepImageForClipVision: Normalization

    • LineArtPreprocessor: Line art generation

Stage 2: Feature Fusion

  • Core Technology:

    • IPAdapterFaceIDKolors:

      • Strength=1.2 / Steps=2 / Blend mode="linear"

      • "K+mean(V) w/ C penalty" algorithm for color retention

    • ControlNetApplyAdvanced: Full-weight line art control

Stage 3: Generation

  • Sampling:

    • 30 steps DPM++ 2M Karras

    • Resolution 512x1024

  • Output: Material-transferred image

5. Input/Output

Input Requirements:

  • Minimum 2 images:

    • Source (style/material reference)

    • Target (content reference)

  • Prompt: Simple (e.g. "4k") + Negative prompt "Fuzzy, low quality"

Output:

  • Generated image (auto-saved to ComfyUI/output)

6. Critical Notes

  1. Hardware:

    • ≥8GB VRAM required (IPAdapterFaceIDKolors is resource-intensive)

    • InsightFace works better on GPU

  2. Troubleshooting:

    • Adjust strength to 0.8-1.2 if face distortion occurs

    • Verify ControlNet model loading if line art fails

  3. Extensions:

    • Add Detailer node for post-processing face refinement

    • Experiment with CLIP vision models (e.g. ViT-L/14)