Unlock Efficient Character Image Creation: A Comprehensive Workflow Guide

CN
ComfyUI.org
2025-03-27 12:38:04

1. Workflow Overview

m8rc76egcdj058vvyqtdf574f6941d055c5cd71dce7188460192971d530e5491020ce6d4547424f8bb4.png

This workflow is designed for batch generation of multi-view character images, ideal for LoRA training data preparation. Key stages:

  1. Multi-View Generation: Creates consistent character images from OpenPose skeletons + reference photos

  2. Upscaling: Enhances resolution via FLUX model

  3. Local Refinement: Fixes face/hand details

  4. Cropping: Splits images into standardized tiles

Core Technologies:

  • SDXL + PulID Flux (identity preservation)

  • ControlNet OpenPose (pose control)

  • StableSR (denoising & super-resolution)


2. Core Models

Model

Function

Source

Base_F.1

Base image generation

Built-in

pulid_flux_v0.9.0

Identity binding

CivitAI

FLUX-ControlNet-Union

Pose control

Manual install

StableSR_000139

Super-resolution

HuggingFace


3. Key Nodes

Node

Purpose

Installation

ApplyPulidFlux

Identity preservation

ComfyUI-PulID plugin

FaceDetailer

Face repair

Impact Pack required

StableSRColorFix

Color correction

ComfyUI-StableSR

Joy_caption_two

Auto captioning

JoyTag plugin


4. Workflow Structure

Group 1: Multi-View Generation

  • Input: OpenPose skeleton + reference image + prompts

  • Process: ControlNet for pose + PulID for consistency

  • Output: 1024x1024 images

Group 2: FLUX Upscaling

  • Input: Raw generated images

  • Process: 1.5x upscale + detail refinement

  • Output: 1536x1536 HD images

Group 3: Local Repair

  • Targets:

    • Faces (detected by face_yolov8m)

    • Hands (detected by hand_yolov8s)

Group 4: Batch Cropping

  • Parameters: Custom crop coordinates (adjust manually)

  • Output: 640x832 standardized tiles


5. Input/Output

Input Parameters:

  • Required:

    • OpenPose skeleton image

    • Character reference photo (upper-body recommended)

    • Prompt (e.g., clothing description)

  • Optional:

    • ControlNet strength (0.5-0.7)

    • Seed value

Output:

  • Cropped character images (PNG)

  • Super-resolution comparison slider


6. Notes

  1. Hardware: 12GB+ VRAM recommended. Use --medvram for low-end GPUs.

  2. Critical Parameters:

    • ControlNet end time: 0.4-0.6

    • Face repair steps: ≥20

  3. Troubleshooting:

    • Download pulid_flux_v0.9.0.safetensors manually if missing

    • Skeleton image resolution ≥1024x1024