Unlock the Power of Video-to-Animation: A Comprehensive Pipeline Guide

CN
ComfyUI.org
2025-03-25 10:31:42

1. Workflow Overview

m8ocukollesss6nzft79eb509b583f4ed27a74d11f44a9e7a.png

This is an advanced video-to-animation pipeline that:

  1. Processes input video frames through AI-powered animation

  2. Leverages AnimateDiff for motion generation

  3. Uses ControlNet for structural guidance

  4. Applies IPAdapter for style transfer

  5. Outputs high-quality videos with upscaling and frame interpolation

Key Features:

  • Video frame extraction and background removal

  • Dual ControlNet guidance (line art + QR monster style)

  • Multi-stage upscaling (model-based + traditional)

  • Frame interpolation for smooth motion


2. Core Models

Model

Purpose

Source

Required Files

DreamShaper8_LCM

Base image generation (LCM-optimized)

CivitAI

DreamShaper8_LCM.safetensors

AnimateDiff

Motion generation

GitHub

sd15_t2v_beta.ckpt

ControlNet

Structure control

HuggingFace

control_v11p_sd15_lineart.pth, control_v1p_sd15_qrcode_monster.safetensors

IPAdapter PLUS

Image-prompt conditioning

GitHub

ip-adapter-plus_sd15.safetensors

RIFE

Frame interpolation

GitHub

rife47.pth


3. Key Nodes Breakdown

Essential Nodes

Node

Function

Installation Source

VHS_LoadVideo

Video frame extraction

ComfyUI-VideoHelperSuite

RemBgUltra

Background removal

Manual install (GitHub)

ADE_AnimateDiffModel

Motion model loader

ComfyUI-AnimateDiff-Evolved

IPAdapterAdvanced

Image prompt processing

ComfyUI-IPAdapter-Plus

RIFE VFI

Frame interpolation

ComfyUI-Frame-Interpolation

Critical Dependencies

  1. AnimateDiff Requirements:

    • Motion modules (e.g., mm_sd_v15.ckpt)

    • Must match SD1.5 model architecture

  2. IPAdapter Requirements:

    • CLIP Vision model (CLIP-ViT-H-14-laion2B-s32B-b79K)

    • Image encoder files

  3. ControlNet Models:

    • Must be SD1.5-compatible versions


4. Workflow Structure

Processing Groups

Group

Function

Inputs

Outputs

Video Input

Frame extraction

MP4 video

Individual frames

Mask Processing

Background removal

Raw frames

Transparency masks

IPAdapter

Style conditioning

Reference images

Style-embedded model

ControlNet

Structure guidance

Line art/masks

Controlled generation

AnimateDiff

Motion generation

Processed frames

Animated latent

Upscaling

Quality enhancement

Low-res frames

HD frames

Interpolation

Frame smoothing

Original frames

High-FPS video

Data Flow

[Video Input] β†’ [Frame Extraction] β†’ [Mask Generation]  
               ↓  
[IPAdapter] β†’ [AnimateDiff] β†’ [ControlNet Processing]  
                               ↓  
[Initial Generation] β†’ [Upscaling] β†’ [Interpolation] β†’ [Final Video]

5. Inputs & Outputs

Required Inputs

  1. Source Video:

    • Format: MP4 (H.264 recommended)

    • Example: 非 ban εΏ… 选.mp4

  2. Reference Images:

    • For IPAdapter style transfer

    • Example: spaghetti.png

  3. Text Prompts:

    • Positive: "Ultra realistic, photography style..."

    • Negative: "oversaturated, [deformed | disfigured]..."

  4. Key Parameters:

    • Initial resolution: 512Γ—96

    • Final resolution: 1080p

    • Seed: 225851860249103 (or random)

Generated Outputs

  1. Video Versions:

    • Preview (low-res)

    • Upscaled (model-based)

    • Interpolated (smooth motion)

  2. Formats:

    • MP4 with H.264 encoding

    • Metadata preservation


6. Critical Notes

Hardware Requirements

  • Minimum: NVIDIA GPU with 12GB VRAM

  • Recommended: 16GB+ VRAM for full resolution

Common Issues & Fixes

  1. VRAM Overflow:

    • Reduce batch_size in EmptyLatentImage

    • Enable --medvram flag

  2. Missing Models:

    • Ensure all .ckpt/.safetensors files are in:

      • models/checkpoints (base models)

      • models/controlnet (ControlNet)

      • models/ipadapter (IPAdapter)

  3. Plugin Conflicts:

    • Update all dependencies via ComfyUI Manager:

      git pull && python -m pip install -r requirements.txt

Optimization Tips

  1. For faster generation:

    • Use LCM-LoRA with reduced steps (10-15)

    • Disable unused ControlNets

  2. For higher quality:

    • Enable Tiled VAE for upscaling

    • Use 2-pass interpolation


7. Installation Guide

Step-by-Step Setup

  1. Install core dependencies:

    cd ComfyUI/custom_nodes
    git clone https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved.git
    git clone https://github.com/Fannovel16/ComfyUI-Frame-Interpolation.git
  2. Download required models:

  3. Configure paths in extra_model_paths.yaml:

    ipadapter:
      base_path: models/ipadapter
    animatediff:
      motion_models: models/motion

This workflow demonstrates professional-grade video animation with ComfyUI. For real-time adjustments, monitor VRAM usage and consider progressively enabling components during testing.