Unlock Cinematic Mastery: Ultra-HD Photography Workflow Revealed
1. Workflow Overview

This workflow, named “Ultra-HD Cinematic Photography”, generates high-resolution images with film-grade quality, suitable for posters, concept art, or photo enhancement. Key features:
4K Output: Supports custom resolutions (e.g., 1536x768).
Multi-Stage Optimization: Combines LoRAs, upscaling, and post-processing filters.
Cinematic Control: Fine-tunes lighting, color, and composition via text prompts.
2. Core Models
Base Model:
F.1基础模型_fp16
: General-purpose realistic generation.
LoRAs:
鲜创一派@光域史诗_超高清电影级摄影_F.1
: Enhances cinematic lighting.鲜创一派@细节狂魔_细节增多增强呈现更多细节_F.1
: Boosts texture details.
Upscaler:
2xNomosUni_span_multijpg_ldl
: 2x super-resolution.
Depth Estimation:
depth_anything_v2_vitl.pth
: Generates depth maps for post-processing.
3. Key Nodes
Text Encoding:
CLIPTextEncodeFlux
: Processes complex prompts (e.g., "dramatic chiaroscuro").BaiduTranslateNode
: Auto-translates Chinese/English prompts.
Generation:
KSampler
: 30 steps, Euler sampler, CFG=1.CR Aspect Ratio
: Sets aspect ratio (e.g., 1536x768).
Post-Processing:
UltimateSDUpscale
: Tile-based upscaling to 4K.LayerFilter: FilmV2
: Adds film grain, lens flares.DepthAnythingV2Preprocessor
: Depth map for DoF effects.
4. Workflow Structure (Groups)
Text-to-Image
Input: Cinematic prompts (e.g., "movie poster style, dark gold palette").
Output: Base generated image.
Control Panel (Model Loading)
Loads base model, LoRAs, and VAE (
ae.sft
).
Upscaling
Uses
UltimateSDUpscale
with LoRA-enhanced details.
Post-Processing
Applies
FilmV2
for color grading and effects.
5. Inputs & Outputs
Inputs:
Positive prompt (e.g., "hyper-detailed eye close-up, wet skin texture").
Resolution (default 1536x768).
LoRA weights (e.g.,
光域史诗
=1.0).
Output:
4K image with side-by-side comparison (
Image Comparer
).
6. Notes
Dependencies:
Install:
ComfyUI-UltimateSDUpscale
(tiled upscaling).DepthAnything
(depth maps).LayerFilter
series (post-effects).
Hardware:
VRAM ≥12GB (4K upscaling is resource-intensive).
Optimization:
Reduce
UltimateSDUpscale
tile size (e.g., 32x32) to avoid OOM.Use
fp8_e4m3fn
precision for lower VRAM usage.