Boost Image Quality with AI: A Comprehensive Workflow for Detail Restoration
1. Workflow Overview

This workflow specializes in high-resolution image upscaling with detail restoration, featuring:
Tiled Processing: Splits images into tiles (
TTP_Image_Tile_Batch
) to prevent VRAM overload.Smart Redraw: Uses ControlNet and prompts to enhance details during upscaling.
Multi-Model Pipeline: Combines
FLUX.1-dev
for generation and4x_NMKD-Siax
for upscaling.Comparison Tool: Side-by-side preview of original vs. upscaled images.
2. Core Models
Model | Function |
---|---|
| Main model for detail generation. |
| 4x upscaling model. |
Dual CLIP encoders | Enhances text-prompt alignment. |
3. Key Components
Node | Purpose | Installation |
---|---|---|
| Tile-based image splitting | Requires |
| Auto-generates prompts (optional) | Install |
4. Workflow Structure
Group 1: Input & Preprocessing
Inputs: Source image (e.g.,
ComfyUI_00043_.png
).Outputs: Tiled image data.
Key Nodes:
LoadImage
,TTP_Tile_image_size
.
Group 2: Tiled Redraw
Inputs: Image tiles + optional prompts.
Outputs: Enhanced tiles.
Key Nodes:
SamplerCustomAdvanced
,FluxGuidance
.
Group 3: Assembly & Output
Inputs: Processed tiles.
Outputs: Final HD image (4K+).
Key Nodes:
TTP_Image_Assy
,VAEDecodeTiled
.
5. Inputs & Outputs
Inputs:
Source image (drag-and-drop).
Optional text prompts (auto-generated if empty).
Tile size (default: 1024x1024).
Outputs:
Upscaled image (saved to
ComfyUI/output
).Comparison preview (
Image Comparer
).
6. Notes
VRAM: 16GB+ recommended. Reduce tile size (e.g., 768x768) for lower usage.
Models:
Manually download
flux1-dev-fp8
and4x_NMKD-Siax
.
Plugins:
cd ComfyUI/custom_nodes git clone https://github.com/ssitu/ComfyUI-TTP-Toolset.git git clone https://github.com/Extraltodeus/ComfyUI-JoyCaption.git
Optimization: Adjust
denoise
(default: 0.1) to balance detail/speed.