Create Stunning 4-Panel Anime Emoticons with AI: A Comprehensive Tutorial

CN
ComfyUI.org
2025-04-18 11:01:44

1. Workflow Overview

m9moif33zptr9grqgb00faf8a9413e5bd80149a3e9d1dc613dda7a93f943fa802642f64ddb8a69e728.png

This workflow generates 4-panel anime-style emoticons with exaggerated expressions (e.g., thinking, surprised, shy, angry). It integrates image understanding, style transfer, and facial control, outputting uniformly divided emoticon images.

2. Core Models

Model Name

Function

Florence-2-large

Vision-language model for image segmentation and captioning.

Janus-Pro-1B

Multimodal model to analyze input images and generate detailed captions.

Stable Diffusion (Flux)

Base image generation with LoRAs for anime stylization.

PuLID Flux

Facial feature control for expression consistency.

3. Key Nodes

3.1 Required Custom Nodes

3.2 Dependencies

  • LoRAs:

    • Flux_GhibliStyle_V1.0 (stylization).

    • GPT-4o_EmoticonConsistency_V1.0 (expression control).

    • Download from platforms like LibLibAI to models/loras.

4. Workflow Structure

Group Name

Inputs

Outputs

Logic

Florence2

Reference image

Character mask + caption

Segments角色 and describes clothing.

Janus

Reference image

Detailed caption

Enhances text prompts.

Text Merge

Florence2 + Janus texts

Combined prompt

Generates final positive prompt.

PuLID Flux

Mask + prompt

Conditioned model

Controls facial expressions.

Generation

Resolution (768x1024), seed, sampler

4-panel latent

Uses Euler sampler.

Post-process

Latent + VAE

Final PNG

Decodes and saves output.

5. Inputs & Outputs

  • Inputs:

    • Required: Reference image (1024x1024), prompt template (e.g., "exaggerated expressions + white shirt").

    • Optional: Seed value, LoRA weights (default 0.45-1.0).

  • Output: 4-panel emoticon PNG (with metadata).

6. Notes

  1. VRAM: ≥12GB recommended; high resolutions may cause OOM.

  2. Debugging: Missing nodes can be installed via ComfyUI-Manager or manual model downloads.

  3. Compatibility: Only works with Flux-based Stable Diffusion models.