Unlock Advanced Image Synthesis with FLUX ControlNet V3.0 Workflow

CN
ComfyUI.org
2025-06-06 11:39:35

1. Workflow Overview

mbkqf7m3m51wh9e6bka图片压缩添加标题 (26).png

This workflow leverages FLUX ControlNet V3.0 for multi-condition controlled generation, combining HED soft-edge, Depth, and Canny edge preprocessing to precisely guide image synthesis. Outputs adhere to input structure and text prompts.

Key Features:

  • Multi-ControlNet Integration (HED + Depth + Canny).

  • Depth Anything V2 for depth map generation.

  • WD14 Tagger for auto-prompt generation.

  • Flux Sampler with FP8 optimization for efficiency.

Output:

  • High-res images (default 1024x1024), stylized by prompts and ControlNet conditions.


2. Core Models

Model Name

Function

Stable Diffusion XL

Base image model (Flux.1-Dev fp16 variant).

Depth Anything V2

Generates depth maps from input images.

ControlNet V3

Provides HED, Depth, and Canny controls.

WD14 Tagger

Auto-generates tags from input images.


3. Key Nodes & Installation

Node Name

Function

Installation

Dependencies

DownloadAndLoadDepthAnythingV2Model

Loads Depth Anything V2 model.

Manual download to /models/depth_anything/.

Model Link

ApplyFluxControlNet

Applies Flux-optimized ControlNet.

Install Flux Nodes via ComfyUI Manager.

Requires ControlNet V3 models (e.g., XLabs-flux-hed-controlnet_v3).

XlabsSampler

Flux sampler with FP8 support.

Part of Flux Nodes.

FP8-compatible GPU (e.g., RTX 40 series).

WD14Tagger|pysssss

Auto-tagging for prompts.

Install WD14 Tagger via ComfyUI Manager.

Requires wd-v1-4-moat-tagger-v2 model.


4. Workflow Groups

  1. HED Group (Blue)

    • Input: Source image (resized via ImageResize+).

    • Preprocess: HEDPreprocessor extracts soft edges.

    • Control Weight: 0.8 (set in ApplyFluxControlNet).

  2. Depth Group (Orange)

    • Input: Same image.

    • Preprocess: DepthAnything_V2 generates depth map.

    • Control Weight: 0.7.

  3. Canny Group (Purple)

    • Input: Same image.

    • Preprocess: CannyEdgePreprocessor (thresholds 100/200).

    • Control Weight: 0.6.

  4. Generation Group

    • Prompts: Processed by CLIPTextEncode (e.g., "Makoto Shinkai style").

    • Sampling: XlabsSampler merges multi-ControlNet conditions.


5. Inputs & Outputs

Input Parameters:

  • Image: Loaded via LoadImage (e.g., sample Redbook image).

  • Prompts: Manual input or auto-generated by WD14Tagger.

  • Resolution: Default 1024x1024 (set in EmptyLatentImage).

Output:

  • Final images saved in /ComfyUI/output/ with metadata.


6. Notes

  1. Hardware:

    • RTX 40 series recommended (FP8 support), VRAM ≥12GB.

    • Depth Anything V2 is VRAM-intensive; may crash at high resolutions.

  2. Model Setup:

    • Download ControlNet V3 models to /models/controlnet/.

    • Missing models trigger download prompts.

  3. Tips:

    • Total ControlNet weights should ideally ≤2.0 (e.g., HED 0.8 + Depth 0.7 + Canny 0.6).

    • FP8 mode may introduce noise; adjust denoise in ModelSamplingFlux.