Generate Breathtaking Aerial Nightscape Videos with WAN2.1 and RIFE Interpolation
1. Workflow Overview

This workflow leverages WAN2.1 video generation model for timelapse/aerial nightscape scenarios, featuring:
Converts static images to dynamic videos (e.g., city light transitions).
4x upscaling + RIFE interpolation (32FPS output).
Custom LoRA (
Nightscape Timelapse LoRA) for enhanced lighting.VRAM-optimized pipeline (runs on mid-tier GPUs).
2. Core Models
WAN2.1 Base (
Wan2_1-I2V-14B-480P_fp8): 480P image-to-video with FP8 precision.Text Encoders:
umt5-xxl-enc-bf16: Multilingual text understanding.open-clip-xlm-roberta-large-vit-huge-14: Image semantics.
Upscaler (
4xRealWebPhoto_v4.pth): 4x resolution enhancement.Frame Interpolation (
rife47.pth): Smart 32FPS conversion.
3. Node Details
Key Nodes
WanVideoSampler: Core video generation (30-step DPM++ with SLG optical flow).CR Upscale Image: 4x super-resolution (lanczosanti-aliasing).RIFE VFI: Frame interpolation (strength=10).
Installation
WAN2.1 Plugin: Manual install from GitHub.
Video Suite: Install
VideoHelperSuitevia ComfyUI Manager.
Dependencies
Model Files: Download from Aliyun OSS.
CUDA 11.7+: Required for FP8 acceleration.
4. Workflow Structure
Input Group:
LoadImage,WanVideoTextEncode.Model Loading:
WanVideoModelLoader,WanVideoVAELoader.Generation Core:
WanVideoSampler,WanVideoSLG(optical flow).Post-Processing: Upscale + Interpolation + Video merge.
5. Inputs & Outputs
Inputs: 480x640 image, prompts (e.g., "smooth camera zoom").
Output: MP4 video (H.264, 32FPS) as
Wan*.mp4.
6. Notes
Errors:
Missing FP8 support breaks model loading.
Optimization:
Enable
offload_devicefor lower VRAM usage.
Compatibility: Requires Linux + ComfyUI ≥0.3.15.