Generate Breathtaking Aerial Nightscape Videos with WAN2.1 and RIFE Interpolation

CN
ComfyUI.org
2025-05-06 09:25:19

1. Workflow Overview

macazdqfmb4w79ynwrt633f9b433b58d3733046903318c4377514051882f847beec73a95500dcdb566e.gif

This workflow leverages WAN2.1 video generation model for timelapse/aerial nightscape scenarios, featuring:

  • Converts static images to dynamic videos (e.g., city light transitions).

  • 4x upscaling + RIFE interpolation (32FPS output).

  • Custom LoRA (Nightscape Timelapse LoRA) for enhanced lighting.

  • VRAM-optimized pipeline (runs on mid-tier GPUs).


2. Core Models

  • WAN2.1 Base (Wan2_1-I2V-14B-480P_fp8): 480P image-to-video with FP8 precision.

  • Text Encoders:

    • umt5-xxl-enc-bf16: Multilingual text understanding.

    • open-clip-xlm-roberta-large-vit-huge-14: Image semantics.

  • Upscaler (4xRealWebPhoto_v4.pth): 4x resolution enhancement.

  • Frame Interpolation (rife47.pth): Smart 32FPS conversion.


3. Node Details

Key Nodes

  • WanVideoSampler: Core video generation (30-step DPM++ with SLG optical flow).

  • CR Upscale Image: 4x super-resolution (lanczos anti-aliasing).

  • RIFE VFI: Frame interpolation (strength=10).

Installation

  • WAN2.1 Plugin: Manual install from GitHub.

  • Video Suite: Install VideoHelperSuite via ComfyUI Manager.

Dependencies

  • Model Files: Download from Aliyun OSS.

  • CUDA 11.7+: Required for FP8 acceleration.


4. Workflow Structure

  1. Input Group: LoadImage, WanVideoTextEncode.

  2. Model Loading: WanVideoModelLoader, WanVideoVAELoader.

  3. Generation Core: WanVideoSampler, WanVideoSLG (optical flow).

  4. Post-Processing: Upscale + Interpolation + Video merge.


5. Inputs & Outputs

  • Inputs: 480x640 image, prompts (e.g., "smooth camera zoom").

  • Output: MP4 video (H.264, 32FPS) as Wan*.mp4.


6. Notes

  1. Errors:

    • Missing FP8 support breaks model loading.

  2. Optimization:

    • Enable offload_device for lower VRAM usage.

  3. Compatibility: Requires Linux + ComfyUI ≥0.3.15.