Revive Faded Memories: A Step-by-Step Guide to Photo Colorization
1. Workflow Overview

This workflow specializes in historical photo restoration/colorization with:
Damage Repair: Fix scratches, fading, and missing parts.
AI Colorization: Context-aware color filling (clothing/background).
Background Consistency: Seamless subject-environment blending.
GPT-4O-Level Coherence: Semantic-aware style preservation.
Core Model:
FluxKontextMax: Optimized for archival images (supports bilingual prompts).
Built-in VAE: Enhanced color recovery (no manual loading).
2. Key Nodes
Main Node:
FluxKontextMaxImageNode
Function: One-click repair+colorize+background reconstruction.
Parameters:
Prompt:
"restore and colorize this photo..."
Steps: 3 (optimized for fast inference).
Seed: Fixed (
780923090651903
) or randomized.
Utilities:
LoadImage: Upload old photos (e.g.,
.jpg
in example).ImageConcanate: Side-by-side comparison (requires
ComfyUI-KJNodes
).MarkdownNote: API docs & prompt tips (non-essential).
Zero-Dependency:
All models are cloud-hosted (local ComfyUI base install sufficient).
3. Workflow Steps
Input: Load damaged photo via
LoadImage
.Processing:
FluxKontextMaxImageNode
auto-executes:Denoise → Structure repair → Semantic colorization → Background fusion.
Output:
SaveImage
saves HD result.ImageConcanate
creates before/after collage.
4. Inputs & Outputs
Input Requirements:
Formats: JPG/PNG (recommended ≥500px resolution).
Ideal Inputs:
B&W or faded color photos
Minor damage with intact subjects
Outputs:
Resolution: Matches input (e.g., 605x910 in example).
Save Path:
/ComfyUI/output/
.
5. Usage Tips
Prompt Crafting (Refer to MarkdownNote):
Use English commands like:
"Repair cracks on the face and colorize the hat dark green"
Avoid vague terms like "improve quality".
Troubleshooting:
Over-sharpening: Reduce
denoise
inFluxKontextMaxImageNode
(default 1.0 → 0.8).Color mismatch: Specify colors in prompts (e.g.,
"color the sky light cyan"
).
Performance:
Cloud API: No local GPU needed (stable internet required).
Local Deployment: Requires 16GB+ VRAM (RTX 3090+ recommended).