Precision Image Creation: Harnessing the Power of Dual ControlNets

CN
ComfyUI.org
2025-06-16 08:55:27

1. Workflow Overview

mbyuzaen10a3kex512o压缩.png

This workflow is a FLUX-based precision image generation pipeline, specialized for indoor scenes (e.g., staircase entrances, carpets, furniture). It uses dual ControlNets (Canny Edge + Depth) for composition control, enhances details with Lora models, and outputs HD images via UltimateSD upscaling.


2. Core Models

Model Name

Function

Source/Installation

Base Algorithm_F.1

Main model (FP8 optimized)

Manual download to checkpoints

FLUX.1-ControlNet (Canny/Depth)

Dual ControlNet for构图控制

Download .safetensors files

4x-UltraSharp

Image super-resolution

Install via ComfyUI-Manager


3. Key Nodes

Node Name

Function

Installation

BaiduTranslateNode

Auto-translates prompts (ZH→EN)

Manual custom node install

FluxGuidance

FLUX architecture conditioning

Built-in

UltimateSDUpscale

Tile-based upscale + detail repair

Install via ComfyUI-Manager

AIO_Preprocessor

All-in-one preprocessor (Canny/Depth)

Requires ComfyUI-Impact-Pack


4. Workflow Groups

  • Group 1: Model Loading

    • Loads base model, VAE, dual CLIP (clip_l + t5xxl)

    • Input: None | Output: Model/CLIP/VAE objects

  • Group 2: Conditional Control

    • Linear Control: Canny Edge + ControlNet

    • Depth Control: Depth Map + ControlNet

    • Input: Reference image | Output: Conditioned Latent

  • Group 3: Image Generation

    • KSampler → VAEDecode → UltimateSD Upscale

    • Input: Latent/ControlNet conditions | Output: HD image (1024x1024)


5. Inputs & Outputs

  • Inputs:

    • Reference image: 768x1024 PNG (e.g., 2 (2).png)

    • Prompts: Supports ZH/EN (auto-translated)

    • Lora weights: Entry Mat Style (strength 1.0) + Indoor Realistic Render (strength 0.3)

  • Output:

    • 4x upscaled image (with metadata)


6. Notes

⚠️ VRAM: Minimum 12GB (peaks during UltimateSD tiling)
⚠️ Dependencies: Requires ComfyUI-Impact-Pack and rgthree extensions
⚠️ Model Paths:

  • ControlNet models in models/controlnet

  • Lora models in models/loras