Unlock the Secrets of Traditional Chinese Art: A One-Click Landscape Painting Workflow
1. Workflow Overview

This workflow, named "One-Click Chinese Style Landscape Painting", transforms input images into traditional Chinese blue-green landscape art with gold-accented effects.
Core Models:
Stable Diffusion: Custom checkpoint
小资禅意山水-青绿山水人物-鎏金人物山水-国风插画系列_1.0
.ControlNet:
control_v11p_sd15_canny
(edge-based structure control).
Function: Image style transfer + detail enhancement.
2. Key Nodes
Node Name | Description | Installation |
---|---|---|
CheckpointLoaderSimple | Loads the custom Chinese-style SD model. | Manually place |
ControlNetLoader | Loads Canny edge ControlNet model. | Download |
CannyEdgePreprocessor | Extracts edge maps from input images for ControlNet. | Install |
CLIPTextEncode | Encodes text prompts into embeddings. | Built-in. |
KSampler | Controls generation (steps: 25, CFG: 7, sampler: | Built-in. |
VAEDecode | Decodes latent images to pixels. | Built-in. |
ClipInterrogator | Auto-generates prompts from input images (optional). | Install via |
ImageConcanate | Concatenates input/output images for comparison. | Install custom node (e.g., |
3. Workflow Structure
Group 1: Model & Preprocessing
Nodes:
CheckpointLoaderSimple
,ControlNetLoader
,CannyEdgePreprocessor
.Input: Source image (via
LoadImage
).Output: Edge map + loaded models.
Group 2: Generation
Nodes:
CLIPTextEncode
,KSampler
,VAEDecode
.Input: Prompts, edge map, model params.
Output: Generated landscape image.
Group 3: Post-Processing
Nodes:
ImageConcanate
,SaveImage
,PreviewImage
.Input: Source + generated images.
Output: Side-by-side comparison + saved result.
4. Inputs & Outputs
Inputs:
Resolution:
1104x1432
(set inEmptyLatentImage
).Prompts: Auto-generated by
ClipInterrogator
or manual input.Sampling: Steps
25
, CFG7
, Samplerdpmpp_2m
.
Output:
Final image: Blue-green landscape with gold accents (PNG).
5. Notes
Model Dependencies:
Download
小资禅意山水
model andcontrol_v11p_sd15_canny
.Paths:
ComfyUI/models/checkpoints
andmodels/controlnet
.
Hardware:
≥8GB VRAM recommended (e.g., RTX 3060+).
Troubleshooting:
Edge detection issues: Adjust thresholds in
CannyEdgePreprocessor
(default:100/200
).Style mismatch: Tweak prompts or reduce ControlNet weight (in
CR Apply ControlNet
).