Unlock High-Speed Image Generation: Nunchaku Flux Workflow Revealed
1. Workflow Overview

Purpose:
A high-speed image imitation & optimization workflow based on Nunchaku Flux, featuring:Image-to-prompt (via
JoyCaption
).Fast image generation (using quantized
FluxDiT
).Image scaling & post-processing (e.g., super-resolution).
GPU cleanup (
easy cleanGpuUsed
).
Core Models:
Nunchaku FluxDiT: Quantized model (
svdq-int4-flux
) for speed.CLIP Encoder:
t5xxl_fp8_e4m3fn.safetensors
+clip_l.safetensors
.Upscaler:
4x-UltraSharp.pth
.VAE:
ae.safetensors
.
2. Key Nodes
JoyCaption
: Uses Meta-Llama-3.1-8B to generate prompts from images.FluxGuidance
: Controls conditioning strength (default3.5
).ModelSamplingFlux
: Configures resolution (1024x1024
) and quantization.KSampler
: Generates images in 20 steps witheuler
sampler.ImageScaleByAspectRatio
: Resizes images withlanczos
interpolation.
3. Workflow Structure
Group 1: Nunchaku Text-to-Image
Input: Prompt (auto-generated or manual).
Process: CLIP encode β FluxDiT β VAE decode β Save.
Output: Final image (e.g., cyberpunk cat).
Group 2: Image Loading & Prompt Reverse
Input: Uploaded image (e.g.,
2794c263...jpg
).Process: Upscale β Caption β Pass to Group 1.
Output: Text description (e.g.,
"a neon cat"
).
4. Inputs & Outputs
Inputs: Image (optional), resolution (
1024x1024
), steps (20
).Outputs: Image saved to
ComfyUI/output
.
5. Notes
Dependencies:
Install Nunchaku UI and
Meta-Llama-3.1-8B
.
Errors:
Missing model files: Check paths for
t5xxl_fp8_e4m3fn.safetensors
.
Optimization:
Use
svdq-int4
for lower VRAM usage.