From Faces to Masterpieces: A Professional AI Portrait Workflow
1. Workflow Overview

Purpose:
A professional AI portrait photography workflow integrating:Face segmentation (
Florence2
+SAM2
).Multi-ControlNet (pose + depth).
IPAdapter style transfer.
Local redraw optimization.
2. Key Nodes
Florence2Run
: Detects faces and outputs masks/BBox.Sam2Segmentation
: Refines hair/clothing edges.ControlNetApplySD3
: Dual control (pose0.6
+ depth1.0
).IPAdapterAdvanced
: Blends style from reference images (strength0.7
).GrowMaskWithBlur
: Expands mask edges for natural blending.
3. Workflow Structure
Face Detection:
Input image →Florence2Run
→ BBox/mask.Matting:
Sam2Segmentation
→GrowMaskWithBlur
.ControlNet:
Canny edge + depth control.IPAdapter:
Style transfer from reference image.Generation:
KSampler
(dpmpp_sde
, 20 steps).Post-Processing:
Redraw (denoise=0.1
) + comparison.
4. Inputs & Outputs
Inputs: Portrait image + style reference.
Outputs: High-res portrait (PNG) with comparison.
5. Notes
VRAM: ≥16GB GPU recommended.
Errors:
Check
Florence2/SAM2
model paths if masks fail.
Optimization:
Reduce sampler steps or use FP16 models.