Generate Breathtaking Nature Images with Precise Control: A Step-by-Step Guide

CN
ComfyUI.org
2025-06-09 11:17:13

1. Workflow Overview

mbozyjbg2d5swc2856r图片压缩f4786c84a9b17c0b5cc66a9807d2333294a7a6d8685d2523c8b48c1cc6aab810.png

This workflow generates high-quality cherry blossom scenes using SDXL model, emphasizing vibrant colors and natural details.

Key Features:

  • SDXL-based high-res (752x1192) image generation

  • Precise scene control via text prompts

  • Batch generation (3 images per run)


2. Core Model

Model Name

Functionality

Installation

LEOSAM HelloWorld SDXL_v7.0

SDXL base model for detailed nature rendering

Manual download required


3. Key Nodes

  • CheckpointLoaderSimple (Node 4)
    ▶ Loads SDXL model (LEOSAM HelloWorld 新世界 | SDXL大模型_v7.0.safetensors)

  • CLIPTextEncode (Node 6/7)
    ▶ Positive Prompt:

    A cherry blossom tree... [detailed scene description]  

    ▶ Negative Prompt: text, watermark

  • KSampler (Node 3)
    ▶ Critical Settings:

    • Sampler: Euler

    • Steps: 70 (high precision)

    • CFG Scale: 8 (strong prompt adherence)


4. Workflow Structure

  1. Model Load:

    • Load SDXL + VAE (Node 4)

  2. Latent Space:

    • Create blank latent image (752x1192 x3) (Node 5)

  3. Text Encoding:

    • Encode scene prompts (Node 6)

    • Filter artifacts (Node 7)

  4. Generation:

    • High-step sampling (Node 3)

  5. Output:

    • Images saved as ComfyUI_XXXX.png (Node 9)


5. Input/Output

  • Inputs:

    • Built-in prompts (modify Node 6 for customization)

  • Outputs:

    • Resolution: 752x1192

    • Batch: 3 images

    • Path: Default ComfyUI output folder


6. Notes

⚠️ VRAM: 12GB+ required for SDXL
⚠️ Generation Time: ~2-3 mins/image (70 steps)
💡 Tips:

  • Reduce steps to 30-50 for faster generation

  • Adjust dimensions in Node 5 for different resolutions