Generate Breathtaking Nature Images with Precise Control: A Step-by-Step Guide
1. Workflow Overview

This workflow generates high-quality cherry blossom scenes using SDXL model, emphasizing vibrant colors and natural details.
Key Features:
SDXL-based high-res (752x1192) image generation
Precise scene control via text prompts
Batch generation (3 images per run)
2. Core Model
Model Name | Functionality | Installation |
---|---|---|
LEOSAM HelloWorld SDXL_v7.0 | SDXL base model for detailed nature rendering | Manual download required |
3. Key Nodes
CheckpointLoaderSimple (Node 4)
▶ Loads SDXL model (LEOSAM HelloWorld 新世界 | SDXL大模型_v7.0.safetensors
)CLIPTextEncode (Node 6/7)
▶ Positive Prompt:A cherry blossom tree... [detailed scene description]
▶ Negative Prompt:
text, watermark
KSampler (Node 3)
▶ Critical Settings:Sampler: Euler
Steps: 70 (high precision)
CFG Scale: 8 (strong prompt adherence)
4. Workflow Structure
Model Load:
Load SDXL + VAE (Node 4)
Latent Space:
Create blank latent image (752x1192 x3) (Node 5)
Text Encoding:
Encode scene prompts (Node 6)
Filter artifacts (Node 7)
Generation:
High-step sampling (Node 3)
Output:
Images saved as
ComfyUI_XXXX.png
(Node 9)
5. Input/Output
Inputs:
Built-in prompts (modify Node 6 for customization)
Outputs:
Resolution: 752x1192
Batch: 3 images
Path: Default ComfyUI output folder
6. Notes
⚠️ VRAM: 12GB+ required for SDXL
⚠️ Generation Time: ~2-3 mins/image (70 steps)
💡 Tips:
Reduce steps to 30-50 for faster generation
Adjust dimensions in Node 5 for different resolutions