Unlock the Secret to Viral RedNote Images with AI-Powered Style Transfer
1. Overview

This workflow replicates RedNote viral images with AI, featuring:
Style Transfer: Uses
RedNote FP8 Model
for authentic aesthetics.Auto-Prompting:
Florence2
analyzes uploaded images to generate keywords.Face Swapping:
PulidFlux
replaces faces with user-uploaded portraits.High-Res Output: 1024x1536 resolution for platform compatibility.
Core Models:
Main:
小红书自然真实FP8模型
LoRA:
Flux_小红书真实风格_V1
(weight=0.8)Prompt Model:
Florence-2-large-PromptGen-v1.5
Face Fusion:
pulid_flux_v0.9.0.safetensors
2. Key Nodes
Node | Function | Installation |
---|---|---|
| Reverse-engineers image prompts |
|
| Face swapping | Requires |
| Dynamic prompt encoding | Built-in |
| Advanced sampling (Euler, 25 steps) | Built-in |
Dependencies:
Plugins:
Florence2
: GitHub.PulidFlux
: Download model manually.
Models:
RedNote model: LibLib.art.
3. Workflow Groups
Input Phase:
XHS Image Upload: Reference image for style analysis.
User Portrait: For face replacement.
Processing:
Prompt Generation:
Florence2Run
→StringFunction
adds prefixes (e.g.,xhs,
).Face Fusion:
PulidFlux
processes user portrait.
Generation:
Sampling: 1024x1536, 25 steps, CFG=3.5.
4. Inputs & Outputs
Inputs:
Reference Image: 1+ RedNote-style images.
User Portrait: High-quality front-facing photo.
Output: HD image saved to
ComfyUI/output
.
5. Notes
VRAM: ≥10GB GPU recommended (FP8 models reduce usage).
Face Swap Tips:
Use well-lit portraits without obstructions.
Troubleshooting:
Florence2 download error
: Manually download models.PulidFlux dependency
: Installinsightface
via pip.
Optimization: Lower resolution (e.g., 768x1152) if OOM occurs.