Re-Style Your World: Expert-Level Anime Art with Flux Architecture

CN
ComfyUI.org
2025-06-04 08:59:21

1. Workflow Overview

mbknuo3600yv28k098j1图片压缩777777.png

This is an advanced Stable Diffusion 3 (Flux architecture) workflow specialized for anime-style (Re-style) generation, featuring:

  • Flux-DiT model replacing traditional UNet

  • ControlNet Upscaler for detail control

  • T5-XXL + CLIP-L dual-text encoder system

Key Models:

  • NunchakuFluxDiTLoader: Flux-architecture SD3 model

  • Flux-ControlNet-Upscaler: Super-resolution control

  • T5-XXL + CLIP-L: Enhanced text understanding


2. Critical Nodes

Node

Function

Installation

NunchakuFluxDiTLoader

Loads 4-bit quantized Flux-DiT model (svdq-int4-flux.1-dev)

Manual install Nunchaku plugin

ControlNetApplyAdvanced

Applies ControlNet constraints (Flux-Controlnet-Upscaler.safetensors)

Requires ComfyUI-ControlNet plugin

ModelSamplingFlux

Adjusts Flux sampling params (CFG=1.15, noise_offset=0.5)

Built-in node

Dependencies:

  1. Model Files:

    • svdq-int4-flux.1-dev → Save to models/fluxdit/

    • Flux.1-dev-Controlnet-Upscaler.safetensors → Save to models/controlnet/

    • t5xxl_fp16.safetensors → Save to models/clip/


3. Workflow Structure

Group 1: Model Loading

  • Nodes: NunchakuFluxDiTLoader, DualCLIPLoader, VAELoader

Group 2: ControlNet Processing

  • Input: Reference image (ComfyUI_temp_pecyg_00001_...png)

  • Params: ControlNet strength=0.6, start=0%, end=54.56%

Group 3: Generation Core

  • Key Params: Resolution=768x1024, steps=28, seed=526841747880726


4. Inputs & Outputs

Required Inputs:

  • Positive/Negative prompts (via two CLIPTextEncode nodes)

  • Reference image (auto-loaded)

Output:

  • Final image saved to ComfyUI folder


5. Important Notes

⚠️ Hardware:

  • Minimum 12GB VRAM (T5-XXL + Flux model)

  • Launch with --medvram flag

🔧 Troubleshooting:

  1. If Nunchaku plugin missing:

    cd custom_nodes && git clone https://github.com/T8star/ComfyUI-nunchaku
  2. ControlNet strength >0.7 may cause artifacts