Bringing Spaces to Life: An Advanced Interior Design Visualization Workflow
1. Workflow Overview

This workflow leverages multiple ControlNets for precision image generation, optimized for interior design visualization. Key features:
Dual-ControlNet: Depth + Canny for spatial and edge control.
Flux Framework: Uses
Interior Design Flux FP8 Model(1024x1536 output).LoRA Enhancement:
Metallic Typography LoRAfor material textures.
Use Case: Design proposals, furniture layout previews.
2. Core Models
Model Name | Function | Source/Installation |
|---|---|---|
Flux Interior Model | Base generative model (FP8) | Manual install to |
FLUX-ControlNet-Depth | Depth map control | Manual install to |
FLUX-ControlNet-Canny | Edge detection control | Same as above |
3. Key Nodes
Node Name | Functionality | Installation |
|---|---|---|
| Image preprocessing (Depth/Canny) | Requires |
| Multi-ControlNet fusion | Built-in |
| Condition boost (strength:3.5) | Requires |
Dependencies:
Plugins
ComfyUI-Flux&comfyui_controlnet_aux
4. Workflow Groups
Group 1: Model Loading
Nodes:
CheckpointLoaderSimple→LoRA StackLoads base model, LoRA, and ControlNets.
Group 2: Preprocessing
Nodes:
LoadImage→ DualAIO_Preprocessor(Depth + Canny).Resolution: 1024x1536.
Group 3: Generation
Nodes:
ControlNetApplyAdvanced→KSampler(20 steps, Euler).Output: HD interior render (auto-saved).
5. Inputs & Outputs
Inputs:
Reference image (e.g., floor plan, 580x750 recommended).
Prompt:
"Gilt on a black background, words"(customizable).
Output:
1024x1536 render (filename prefix
ComfyUI).
6. Notes
⚠️ VRAM: Minimum 12GB (dual ControlNets + high-res).
⚠️ Troubleshooting:
Control failure → Verify ControlNet/preprocessor match.
Distortion → Adjust
strengthinControlNetApplyAdvanced(default:0.8).
⚠️ Tips:Use
DepthAnythingV2Preprocessorfor better depth estimation.Try
dpmpp_2msampler for finer details.
Demo Steps
Replace image in
LoadImage(clear contours work best).Edit prompt in
CLIPTextEncode(e.g.,"Modern living room, warm tones").Run
Queue Prompt. Output saves toComfyUI/output.