The Ultimate Image Enhancement Tool: A Deep Dive into LBM Relighting Workflow
1. Workflow Overview

This workflow specializes in image relighting using LBM (Lighting Balance Model) to modify illumination conditions. Key features:
Subject/background separation
Physics-based lighting adjustment
Automated masking & composition
2. Core Models
LBM_relighting.safetensors: Main model (download from HuggingFace)
TransparentBG: Background removal (base version)
ImageResizeKJv2: Intelligent resizing algorithm
3. Critical Nodes
Node | Function | Installation |
---|---|---|
LoadLBMModel | Loads LBM relighting model | Manual plugin install |
LBMSampler | Performs lighting sampling | Bundled with LBM plugin |
ImageCompositeMasked | Mask-aware composition | Built-in |
4. Processing Pipeline
Phase 1: Input Preparation
Dual input channels:
Subject:
image__00038_ (1).png
(832x1216)Background:
00141-338031962.png
(1024x1024)
Resolution normalization via
ImageResizeKJv2
Phase 2: Background Processing
TransparentBGSession+
creates removal sessionImageRemoveBackground+
generates alpha mask
Phase 3: Relighting
Load LBM model (bf16 precision)
20-step lighting adjustment with
LBMSampler
Masked composition (
ImageCompositeMasked
)
Phase 4: Output
Real-time preview (
PreviewImage
)Auto-saved results (path:
LBM%date:yyyy-MM-dd%\Flux-
)
5. I/O Specifications
Input Requirements:
Subject: PNG with alpha channel recommended
Background: Resolution ≥1024x1024
Output:
Relit composite image
Metadata preserved
6. Critical Notes
Manual Downloads Required:
LBM model: HuggingFace link
Save to
/models/lbm/
VRAM Requirements:
Minimum 8GB (for 1024x1024)
bf16 precision recommended
Troubleshooting:
Check
TransparentBG
model if background removal failsAdjust mask feathering for edge artifacts