Master Magazine-Grade Portraits: A Step-by-Step Editing Guide
1. Workflow Overview

This workflow specializes in magazine-grade facial expression editing, featuring:
6-level parametric control
Non-destructive editing pipeline
EXP_DATA reuse system
2. Core Technology
ExpressionEditor: 3D morphable model-based system
GQ Portrait Dataset: Built-in fashion photography templates
3. Critical Nodes
Node | Function | Installation |
---|---|---|
ExpressionEditor | Main expression editor | FaceX plugin required |
LoadImage | Hi-res portrait loading | Built-in |
4. Processing Pipeline
Input Phase:
Source image loading (982x1400)
Auto 68-point facial landmark detection
Editing Stack:
Base Layer (Node 10):
Mouth slightly open (1.0)
Eyebrows lowered (-15)
Eye Enhancement (Node 13):
Pupil dilation (11.2)
"OnlyEyes" isolation mode
Dynamic Blending (Nodes 14/17/19/21):
Multi-parameter mixing
Output:
Saves final composite with metadata
5. Parameter Schema(Python)
{
"eyebrow_raise": 0, # Range: [-20,20]
"eye_blink": 3, # 0=open, 10=closed
"intensity": 1.7 # Global multiplier
}
6. Usage Notes
Prerequisites:
FaceX plugin + dlib library
Input Specifications:
Min. 800x1200 resolution
Front-facing portraits
Optimization:
CUDA acceleration recommended
Layer complex expressions progressively
Layer complex expressions progressively
Special Notes
Optimized for Asian facial features, adjust
face_width
for CaucasianEXP_DATA saving enables batch processing
Version-lock recommended due to parameter range changes