Mastering Video-to-Video Translation: A Deep Dive into Wan2.1 VACE Model and ComfyUI
1. Workflow Overview

This workflow uses Wan2.1 VACE Model for Video-to-Video translation, featuring:
Frame Reprocessing: Enhances each frame via AI model
Depth Control: Uses
DepthAnything
for spatial consistencyStart/End Frame Guidance: Ensures temporal coherence
Flux Optimization: Improves generation stability
2. Core Models
Model Name | Function | Path |
---|---|---|
VACE-Wan2.1-1.3B-Preview.safetensors | Main video translation model |
|
wan_2.1_vae.safetensors | Video VAE encoder | Same as above |
depth_anything_vitl14.pth | Depth map generator |
|
flux1-dev-fp8.safetensors | Flux optimization model |
|
3. Key Components
Node Name | Function | Installation |
---|---|---|
WanVideoVACEEncode | Encodes video frames | Install |
DepthAnythingPreprocessor | Generates depth maps | Install |
FluxGuidance | Stabilizes generation | Built-in (requires Flux model) |
VHS_VideoCombine | Renders final video | Install |
4. Workflow Structure
Group 1: Load Models
Loads Wan2.1 VACE, VAE, and T5 text encoder
Group 2: First Frame Reprocessing
Generates depth map from input video’s first frame
Applies
FluxGuidance
for optimized rendering
Group 3: VACE Video Generation
Guided by start/end frames and depth video
Parameters:
Resolution: 512x768 (adjustable)
Frame rate: 16fps (via
VHS_VideoCombine
)
Group 4: Video Export
Output: MP4 (H.264, CRF=19)
5. Inputs & Outputs
Required Inputs:
Source video (e.g.,
bc78b00a0e5776429eae83cf6aedc8d294f3031eb601476ecd3974bec50c0559.mp4
)Prompt (e.g., "Beautiful girl dancing")
Final Output:
Reprocessed MP4 video (e.g.,
AnimateDiff_00003.mp4
)
6. Notes
⚠️ VRAM Requirement: Minimum 16GB (24GB+ recommended)
💡 Model Setup:
Ensure Wan2.1 VACE models are in correct paths
depth_anything
model auto-downloads on first run (~1.5GB)
🔧 Tuning Tips:
Adjust
denoise=1
inKSampler
for reprocessing strengthModify
40
inFluxGuidance
for detail/stability trade-off