Unlock Holographic Visuals: Advanced Image Translation Workflow Revealed

CN
ComfyUI.org
2025-06-05 10:00:28

1. Workflow Overview

mbj7gmy58o05tipvthe642296c13701dba4173425bab38bee8303395f73137d55c207b3c3cbbc9b89e7.gif

This is an advanced holographic tech-style image translation workflow featuring:

  • Depth-aware image repainting (DepthAnything V2)

  • FLUX-based futuristic holographic effects

  • UltimateSD upscaling integration

  • Multi-stage conditioning control

Core Models:

  • DepthAnything V2: Depth map generation

  • F.1_Depth-fp16: FLUX base model with depth control

  • Holographic LoRA: Style fine-tuning (weight 0.8)

  • R-ESRGAN_4x+ Anime6B: Upscaling model


2. Critical Nodes

Node

Function

Installation

DepthAnything_V2

Depth map generation

Install Depth-Anything

FluxGuidance

FLUX conditioning control

Built-in

InstructPixToPixConditioning

Image-to-image translation

Requires Impact-Pack

UltimateSDUpscale

Smart upscaling

Install Ultimate-SD-Upscale

Dependencies:

  • Model Files:

    • Place ae.sft in models/vae

    • Download 全息科技素材_V1.0.safetensors to models/loras

  • Plugins: Essential to use ComfyUI-Manager


3. Workflow Structure

Key Groups:

  1. Input (Left):

    • Load image → Resize to 1024x1024 → Generate depth map

    • Prompt: "quanxi,3D rendering,holographic"

  2. Main Process (Center):

    • Depth map + FLUX generation → 30-step Euler sampling

  3. Upscale (Right):

    • 2x UltimateSD upscale → 512x512 tile processing


4. Inputs & Outputs

Required Inputs:

  • Source image: PNG/JPG (e.g. 未标题-2.png)

  • Resolution: Auto-adjusted to 1024x1024

  • Seed: Randomizable (default)

Final Output:

  • Format: PNG with metadata

  • Pipeline: Original → Depth conversion → Holographic render → Upscale


5. Notes

  • VRAM: ≥12GB required (more for upscaling)

  • Common Errors:

    • Depth model failed: Verify depth_anything_v2_vitl_fp32.safetensors

    • LoRA conflict: Avoid multiple style LoRAs

  • Optimization:

    • Reduce upscale tile size to 256x256

    • Use fp16 models for faster generation