Unlock the Power of Style Transfer: A Deep Dive into Inverse Sampling and Content Reconstruction

CN
ComfyUI.org
2025-06-12 07:32:54

1. Workflow Overview

mbt29nia7vg85zflmq12.11.jpg

This workflow specializes in style transfer and content reconstruction using:

  • Inverse Sampling: Encodes reference images to latent space via VAE

  • Dynamic Noise Control: DisableNoise + FlipSigmas for noise inversion

  • Flux Stack: Bidirectional sampling with ODE solvers

  • Prompt Guidance: Modify content via text (e.g., replace "cat" with "elephant")

2. Core Models

Model

Function

Source

BaseAlgo_F.1

FP8 UNet model

Manual download

t5xxl_fp8_e4m3fn

Multimodal text encoder

Flux toolkit

ae.sft

Lightweight VAE

Required companion file

3. Key Nodes

Node

Purpose

Installation

FluxReverseODESampler

Inverse ODE sampling

Flux Plugin

InFluxModelSamplingPred

Dynamic parameter prediction

Manual FP8 config

ImageResize+

Smart resizing

ComfyUI Manager

DisableNoise

Noise gate

Built-in

4. Pipeline Stages

Stage 1: Reference Processing

  • Input: Upload image (e.g., da5452ac-33d5-4d88-b08e-7f8a6eb327dc.png)

  • Key Steps:

    • ImageResize+ to 1024x1024

    • VAEEncode to latent space

Stage 2: Inverse Sampling Core

  • Tech Stack:

    • FlipSigmas noise inversion

    • FluxReverseODESampler (CFG=3.5, linear decay)

    • BasicGuider for conditioning

Stage 3: Content Generation

  • Prompt Editing: Modify keywords in CLIPTextEncode

  • Output: Decode via VAEDecode

5. Inputs & Outputs

  • Required Inputs:

    • Reference image (auto-resized)

    • Custom prompts (bilingual support)

  • Outputs:

    • 1024x1024 generated image

    • Real-time preview

6. Critical Notes

  1. Dependencies:

    • Download FP8 BaseAlgo_F.1 and ae.sft

    • Flux requires Python 3.10+

  2. Hardware:

    • Minimum: 8GB VRAM

    • Recommended: RTX 3060+

  3. Troubleshooting:

    • FP8 not supported → Upgrade CUDA to ≥11.8

    • Blurry results → Adjust CFG in FluxDeGuidance (2.5-4.0)