Unlock the Power of Aging Timelapse Videos with Wan2.1 Model Workflow
1. Workflow Overview

This workflow leverages Wan2.1 Model to generate "Aging Timelapse" effect videos, featuring:
Image-to-Video Conversion: Transform input images into dynamic aging process videos
Time-Lapse Effects: Simulate wrinkles, hair whitening, and posture changes
Frame Interpolation: Boost smoothness via GIMM-VFI (16fps→32fps)
Multi-Stage Control: Combines T5 text encoding, CLIP vision encoding, and LoRA fine-tuning
2. Core Models
Model Name | Function | Path |
---|---|---|
Wan2_1-I2V-14B-480P_fp8_e4m3fn.safetensors | Main video generation model |
|
Aging Timelapse (Wan2.1 I2V LoRA)_v1.0 | Aging effect adapter |
|
umt5-xxl-enc-fp8_e4m3fn.safetensors | Multilingual text encoder |
|
gimmvfi_r_arb_lpips_fp32.safetensors | Frame interpolation model | Auto-download to |
3. Key Components
Node Name | Function | Installation |
---|---|---|
WanVideoModelLoader | Loads Wan2.1 video model | Install |
WanVideoTextEncode | Processes aging effect prompts | Same as above |
GIMMVFI_interpolate | Frame interpolation (2x) | Install |
WanVideoTeaCache | VRAM optimization | Built-in with |
VHS_VideoCombine | Video rendering & export | Install |
4. Workflow Structure
Group 1: Image-to-Video (Aging Effects)
Inputs:
Source image (e.g.,
ComfyUI_05329_.png
)Aging prompt (e.g., "fine wrinkles, gradual hair whitening")
Process:
Extract visual features via
WanVideoImageClipEncode
Encode text descriptions with
umt5
Enhance details using LoRA
Output: 512x768 latent video
Group 2: Interpolation & Export
Process:
Upsample 16fps to 32fps with
GIMMVFI
Render MP4 via
VHS_VideoCombine
(H.264)
Params:
CRF=19 (high quality)
Frame rate: 32fps
5. Inputs & Outputs
Required Inputs:
1024x1536 portrait image (PNG)
Aging description text (Chinese/English)
Seed value (default: random)
Final Output:
MP4 video (e.g.,
wanvideo_00007.mp4
)Saved to:
ComfyUI/output/
6. Notes
⚠️ VRAM Requirement: Minimum 16GB (24GB+ recommended)
💡 Model Downloads:
Frame interpolation model (~4GB) auto-downloads on first run
Wan2.1 models require manual placement if missing
🔧 Tuning Tips:
Adjust
0.26
inWanVideoTeaCache
for speed/quality trade-offModify interpolation multiplier in
GIMMVFI
(default: 2x)